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Abstract 
The study of automated planning within tradi- 
tional artificial intelligence has produced a use- 
ful set of techniques for synthesizing plans of ac- 
tion. This traditional study of planning has con- 
centrated on the problem of plan synthesis and, as 
a result, has left unaddressed many important is- 
sues involved with closed-loop plan execution. In 
contrast, traditional control theory has produced 
a set of analytical tools for the construction of ro- 
bust control systems. This paper addresses prob- 
lems that lie at  the boundary of planning and con- 
trol, from an AI planning perspective. Such prob- 
lems involve the active selection of relevant actions 
through automated planning and also require the 
robust execution of the actions thus selected. 

Introduction 
According to the field of Artificial Intelligence, plan- 
ning is the task of selecting and sequencing actions. 
Actions are selected on the basis of their goal-achieving 
abilities, and are subsequently sequenced to ensure 
that the goals for which the actions have been selected 
are indeed achieved. The output from an AI planner is 
a plan, generally represented as a partially ordered set 
of actions. The processes of plan generation and plan 
use are typically quite distinct in the AI view; once a 
complete plan has been generated, it is handed off to 
a separate system for execution. The execution sys- 
tem is expected to follow the plan of action if possible. 
If the plan works, the original goal, as posed to the 
planner, is achieved; if the plan fails, the plan executor 
reports this back to the planner and the cycle of plan 
generation and execution is repeated. 

Together, the planner and executor can be viewed as 
a “control system” that accepts a goal and repeatedly 
attempts to reach a state in which this goal is satisfied. 

$This work has been partially supported by the Artificial 
Intelligence Research Program of the Air Force Office of 
Scientific Research. 

ZAlso affiliated with the Computer Science Department 
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For a variety of reasons, such a system will not work 
for a usefully general range of problems. This paper 
explains why. The next section outlines the capabili- 
ties of current plan generation and execution systems. 
Following this, a sample planning and control prob- 
lem is defined and then used to show where traditional 
AI planning fails. The failure of traditional planning 
is used to motivate a discussion on aspects of a new 
approach to the relationship between plan generation 
and plan execution. 

Traditional AI Planning and Execution 
A traditional AI planner is given a variety of informa- 
tion from which it is expected to manufacture plans. 
It is given a set of operator schemata describing ac- 
tions that can be taken by the execution system, a set 
of facts describing the execution system’s current envi- 
ronment, and a goal to achieve. Operators are typically 
expressed as partial functions from one set of facts, or 
initial state, to another set of facts, or successor state. 
While the state-based method is not the only way of 
expressing operators, it has received significant study 
and use in the literature. 

A goal is a predicate that must be made true at 
some point in the future. Typically, the predicate is a 
conjunction of non-negated facts, and the goal is said 
to be achieved by a plan when the execution of the 
plan can produce a state in which the predicate wil l  be 
true. The plan generated by a planner must achieve 
the given goal, and additionally, it must be composed 
of the given operator schemata, suitably instantiated 
and ordered; further, the plan must be applicable in 
the execution system’s current environment. 

The inputs to a planning algorithm are a set of o p  
erator schemata, an initial state, and a goal. If the 
input languages for operators, states, and goals are suf- 
ficiently expressive, then there is no algorithm which 
can produce a plan in time polynomial in the size of 
the inputs. This isn’t surprising, since planning prob- 
lems can encode tasks of general purpose computa- 
tion (Chapman, 1985). Thus in order to synthesize 
plans, planners must seamh through a space of al- 
ternatives, considering various possible solutions, re- 



Figure 1: Problem Initial State (left) and Problem Goal State (right) 

jecting some, pursuing others. To be useful, a plan- 
ner must ruthlessly prune its search space: as with 
any other combinatorially explosive problem, heuris- 
tics must be employed to effectively control search. In 
traditional AI planning, a heuristic which was found 
to be particularly useful for planning problems was 
means-ends analysis (Newel1 & Simon, 1963). This 
heuristic was sanitized and popularized by the STRIPS 
system (Fikes & Nilsson, 1971), and versions of means- 
ends analysis have been used extensively ever since. 

During search, most planners represent a plan as a 
partially ordered set of actions. A partially ordered 
plan is typically used as shorthand: all total orders 
consistent with the partial order are considered accept- 
able. For execution purposes however, plans are often 
compiled into another form. Abstractly, the form is 
that of a function which maps a state into the action 
that should be performed in that state. 

For a totally ordered plan, a state-to-action function 
can be compactly represented as a triangle table (Fikes, 
Hart, & Nilsson, 1972). The triangle table format gives 
an execution system the ability to index the action 
most appropriate to execute in its current state. Using 
a triangle table, an execution system will sometimes 
repeat failed actions and skip actions in the sequence 
whose execution is no longer necessary. 

In terms of state coverage, the logical extreme of a 
triangle table has been called a universal plan (Schop- 
pers, 1987). In the abstract, a universal plan is a total 
function from the space of states to possible actions; 
that is, the plan that the function characterizes tells 
the execution system what to do in all possible states. 
A universal plan is an interesting theoretical extreme, 

and can serve as a holy grail to planners concerned with 
absolute plan robustness. Of course, for domains of re- 
alistic complexity, knowledge and time will be l i i t ing  
resources: it will often be impossible to completely de- 
fine the space of domain states in advance due to lack 
of knowledge; also, even when the domain can be ade- 
quately defined in advance, the computational cost of 
fmding an action for each state can be prohibitively 
expensive (Ginsberg, 1990). 

A Planning and Control Problem 
There are several commonly acknowledged liitations 
of traditional AI planning. This section presents a 
“simple” planning and control problem for which tra- 
ditional AI techniques prove inadequate. The reasons 
why they prove inadequate are addressed in the next 
section. 

Let us consider a domain in which the environment 
is a two-dimensional grid of cells populated with tiles 
and a single agent. A tile is a named polygon which fits 
in a single cell. No matter where the agent is, it can 
sense the contents of each cell at will. The agent fits in 
a single cell and has four grippers which extend in the 
four compass directions. The agent can move horizon- 
tally or vertically and can grasp a tile in a horizontally 
or vertically adjacent cell; the agent can always release 
a tile that it is grasping. 

In addition to the agent-executable actions, there is 
an external event over which the agent has no control; 
this event corresponds to a “gust of wind”. Winds o p  
erate as vectors of force originating from one of the four 
grid borders. A tile can be “blown” by a gust of wind 
only if the following two conditions hold: (i) the path 



Figure 2: Wind Break Solution (left) and Tile Buttress Solution (right) 

between the tile and the wind’s origin is clear; and (ii) 
the cell into which it would be blown is empty. There 
is a delay specified that applies to all winds, indicating 
the time lag between successive gusts. Additionally, 
each of the four directions is assigned a number indi- 
cating the probability that a gust of wind will come 
from that direction. 

For example, if the gust delay is 5 minutes and the 
probability of a south wind is 0.75 and of west wind is 
0.25, then every 5 minutes there will be a gust of wind 
and 75% of those gusts will come from the south and 
25% will come from the west. 

Let’s consider an example problem in this domain 
which is posed to the agent at 11:52 AM. The current 
state of the world is depicted in the left half of Figure 1; 
the agent is in the lower left corner. In this problem, 
the gust delay is 10 minutes and all gusts come from 
the west. The goal of the agent is to maintain the 
configuration of triangular shaped tiles (including the 
empty inner cell) illustrated in the right half of Figure 1 
from noon till midnight. Due to the west wind, simply 
assembling the goal configuration will not suffice; tiles 
A, C, and D could be blown from their goal locations 
between noon and midnight. 

One way to prevent the wind from disturbing the 
goal configuration is to construct a stable wind break 
using tiles E, F, and G; this type of solution is shown 
in the left half of Figure 2. The right half of Fig- 
ure 2 shows an alternate solution using a combination 
of wind breaks and tile buttresses. 

Limitations of Traditional AI Planning 
How would traditional AI planning address such a 
problem? The goal languages of traditional planners 
do not easily allow for the expression of goals with tem- 
poral extent, so it would be difficult to express the re- 
quirement that tiles A, B, C, and D remain in their goal 
locations from noon until midnight. Traditional AI 
planning has used domains such as the blocks world to 
study the role of heuristics like means-ends analysis. A 
typical goal would call for the achievement of a certain 
block assembly. Such goals can be effectively managed 
by means-ends analysis, since the relationship between 
an action’s effects and the reason for including that ac- 
tion in a plan is relatively straightforward. However, 
for the problem considered here, where the goal is one 
of maintenance, the relationship between the effects of 
actions and the satisfaction of the overall goal is less 
direct. Means-ends analysis requires extensions to be 
used on goals of maintenance. 

It would also be difficult for a traditional planner to 
represent and reason about the winds that are part of 
this problem. In traditional AI planning, it is assumed 
that the only source of change in the world is the execu- 
tion of a plan step. Traditional planning does not pro- 
vide reasoning mechanisms for exogenous events; this is 
especially true for our problem, where the winds occur 
with statistical regularity. If one is unable to represent 
the statistical properties of the winds, then one will 
also be unable to exploit this information to control 
search. All gusts are not equally likely, so search can 
focus first on those that have the highest probability 
of occurring. Traditional planning makes no provision 
for the use of probabilities in controlling search. 



A “closed-loop controller” based on traditional AI 
planning ideas must generate a complete plan prior to 
execution. The plan will be passed to the executor for 
physical realization, and error reports will be fed back 
to the planner. In response to an error the planner 
will return another complete plan and begin the cy- 
cle anew. This approach, while abstractly adequate, 
will not work when there are tight deadlines associ- 
ated with the problem’s goals. If the planner has not 
produced a complete plan by noon, then the executor 
will have no plan to execute and thus will be unable 
to take action in service of the goal. When the total 
time taken to produce and execute a complete plan vi- 
olates a given deadline, the only workable approach is 
to allow execution to begin before planning is finished. 

ERE: Extending the Traditional 
Framework 

The Entropy Reduction Engine project is our on-going 
research effort concerned with the effective integr* 
tion of planning, scheduling, and control. This section 
briefly examines aspects of the ERE approach which 
overcome the l i t a t i ons  of traditional AI planning dis- 
cussed in the previous section. 

As an extension to simple goals of achievement, our 
approach employs a language of behavioral constraints 
which is based on a branching temporal logic (Drum- 
mond, 1989). Here is a behavioral constraint, or BC, 
that expresses the goal in the problem presented above. 

(maintain 
(and ( t i le- loc A (3 2)) 

( t i le- loc B (4 3)) 
( t i le- loc C (2 3))  
( t i le- loc D (3 4) )  
(cell-empty (3 3) ) )  

1200 2400) 

The predicate ( t i le- loc A (3 2)) indicates that the 
tile denoted by A be at  the grid location denoted by 
the pair (3 2). The predicate (cell-empty (3 3 ) )  is 
used in the obvious way. The maintain part of the BC 
applies to the conjunction of tile location predicates 
and the cell empty predicate; this conjunction must 
be true from the time denoted by 1200 until the time 
denoted by 2400. 

In order to consider future possible courses of ac- 
tion, our planner needs a causal theory for each domain 
of application. A causal theory is a set of operator 
schemata which defines both the actions that are con- 
trollable by the system and the exogenous events over 
which the system has no control. In our framework, a 
causal theory describes the different possible outcomes 
of an action or event and their associated probabili- 
ties. The inclusion of probabilities within our operator 
language is a significant extension to traditional repre- 
sentations. 

One part of the planner, the projector, explores var- 
ious possible futures by repeatedly finding applicable 

operators and applying them to produce new hypothet- 
ical states. The projector creates a directed acyclic 
graph called a p-ojection where each node denotes a 
domain state and each arc is labeled with a domain 
operator. Projection associates a duration with each 
operator application and uses this to calculate a time 
stamp for the resulting state. The process of creating 
a projection from a causal theory is called temporal 
projection. 

A path in a projection graph denotes a future pos- 
sible behavior. Projection paths which satisfy a given 
behavioral constraint are compiled into a set of Sit- 
uated Control Rules, or SCRs (Drummond, 1989). 
These are if-then rules, in which the antecedent refers 
to facts about the execution system’s environment and 
the current behavioral constraint, and in which the 
consequent contains a set of alternative operators to 
execute. Available SCRS indicate to the executor those 
actions which will lead to the eventual satisfaction of 
its current behavioral constraint. Our execution sys- 
tem always checks to see if any existing SCRS are ap- 
propriate to the current state and given behavioral con- 
straint. If so, the SCRs’ advice about what to do next 
is heeded. 

Our approach to SCR synthesis requires two phases 
of temporal projection. The first phase is carried out 
by an algorithm called traverse, and the second phase 
by an algorithm called robustify. Our traverse algo- 
rithm uses what we call “behavioral constraint strate- 
gies” to help incrementally produce executable SCRs. 

A behavioral constraint strategy (or BC strategy) is 
a partial order over a set of behavioral constraints. 
Behavioral constraint strategies for a given behavioral 
constraint are produced using domain- and problem- 
specific planning expertise. The process is beyond the 
scope of this paper; Bresina and Drummond (1990) 
give more information. The BC strategy constructed 
for a given BC indicates a set of subproblems for the 
planner to satisfy and an order in which to satisfy 
them. For example, consider the following BC strat- 
egy. 

lst 
2nd 
3rd 
rlth 
5th 
6th 
7th 

(achieve (t i le-loc G (2 2))) 
(achieve (t i le-loc A (3 2))) 
(achieve ( t i le- loc F (I 3 ) ) )  
(achieve ( t i le- loc C (2 3 ) ) )  
(achieve (t i le-loc B (4 3))) 
(achieve ( t i le- loc E (2 4)) )  

(achieve (t i le-loc D (3 4)))  

This strategy happens to be totally ordered, and could 
be used by the system to produce the windbreak so- 
lution of Figure 2. Following this strategy, the tiles 
would be assembled row-by-row, bottom-to-top, and 
each row would be constructed left-to-right. 

Traverse synthesizes a single projection path that 
satisfies a given BC strategy. The algorithm uses the 



BC strategy it is given to l i t  search. The partial or- 
der in a BC strategy is ”parsed” by traverse; traverse 
must find a path which satides each BC in the given 
BC strategy, in an order consistent with the strategy’s 
partial order. When working on the satisfaction of a 
single BC in a strategy, traverse uses a search heuris- 
tic based on a combination of path reliability and path 
utility. The reliability estimate is based on the prob- 
abilities of the various state-to-state transitions in the 
path. Path utility is measured by estimating the re- 
maining work necessary to satisfy a particular BC in 
the strategy from the current end state of the develop 
ing path. In traditional means-ends analysis, a situa- 
tion difference measure was used to estimate the “dis- 
tance” between an arbitrary state and a goal (Nilsson, 
1980). Our notion of estimated remaining work gener- 
alizes this simpler notion of situation difference to han- 
dle goals with temporal extent (Drummond & Bresina, 

Recall from our motivation in the last section that 
it might be necessary for an execution system to take 
action before a complete plan has been generated. Our 
approach provides this capability by compiling SCRs 
from each projection subpath that satisfies a BC in the 
BC strategy. If necessary, the execution system can 
act on these SCRs. It is the role of the BC strategy to 
enforce global coherence over the set of local subpaths. 
Thus, it is the BC strategy which provides some degree 
of confidence that the developing solution path is likely 
to be a prefix of a complete solution path. 

For example, the wind break BC strategy given 
above can be used by traverse to synthesize a set of 
SCRs for the placement of tile G in its intended location 
before the entire set of SCRs for the overall problem 
has been produced. This means that the execution sys- 
tem can, if necessary, move G into place while further 
projection is carried out. 

Once the entire BC strategy has been satisfied, the 
execution system will have a set of SCRs describing 
a single correct behavior. This initial set of control 
rules has a certain probability of satisfying the given 
goal. In the second phase of our approach, we use 
an algorithm called robustify to incrementally increase 
the probability of BC satisfaction by synthesizing ad- 
ditional control rules that handle “error” states the 
execution system is likely to encounter when following 
the initial SCRs. Put simply, robustify scans along the 
original satisfactory projection path looking for high- 
probability “deviations”. A deviation from a path is a 
transition from a state on the path to a state that is 
not on the path. Robustify attempts to recover from 
such deviations by finding alternative paths back to 
the original path. Additional SCRs are compiled from 
each additional recovery path found. 

A triangle table (Fikes et al., 1972) is like a set of 
SCRs designed to deal with each state in a sequence of 
states, and a universal plan (Schoppers, 1987) is like a 
set of SCRs which has 100% coverage of the space of 

1990). 

states. By using probabilities the algorithm achieves a 
computationally effective balance between the l i i t e d  
robustness of triangle tables and the absolute robust- 
ness of universal plans. 

only attempt in AI to address 
time embedded control. Other 

representative approaches include Brooks’ (1985) sub- 
sumption architectuwz, the action nets of Nilsson et a1 
(1990), Maes’ (1990) spreading activation approach, 
and the situated automata of Rosenschein and Kael- 
bliig (Rosenschein, 1989; Rosenschein & Kaelbliig 
1986; Kdbling, 1987a,b, 1988). Each of these a p  
proaches gives a designer a language and methodol- 
ogy for specifying a control system. Other work in AI 
has also considered the use of probabilities and tempo- 
ral reasoning; for instance, see Dean and McDermott 
(1987), Hanks (1990), and Dean and Kanazawa (1988). 
Drummond and Bresina (1990) provide a more detailed 
description of the traverse and robustify algorithms and 
comparison with related work. 

Conclusions 
Our work is attempting to extend the tools of tradi- 
tional AI planning to handle more complex domains. 
In particular, we have studied goals with temporal 
extent; the representation of, and reasoning mecha- 
nisms for, the management of exogenous events; the 
use of probabilities for controlling sear+ and the role 
of plans in guiding an execution system. This research 
is in early stages, and will benefit from a better under- 
standing of work in the area of discrete event control 
systems ( b a d g e  & Wonham, 1989). 

Situated Control Rules are used by the execution 
system as a set of local instructions constituting a par- 
tially defined control program. Over time, the preci- 
sion of the control program increases, and the probabil- 
ity of the execution system “doing the right thing” goes 
up. This means that, if necessary, the plan execution 
system can act before a complete plan has been gener- 
ated. Our approach is predicated on the claim that for 
many problems there are strict limits on the system’s 
knowledge of the environment and limits on the time 
given to the system for the computation of a plan. Our 
approach to managing search has addressed the issue of 
time-limited computation, but has not presented any 
solutions to the problem of l i i t e d  knowledge of the 
environment . 

We are critically concerned with managing the com- 
binatorial complexity of search required to synthesize 
plans in domains such as the one we have briefly con- 
sidered in this paper. Algorithms which are polyno- 
mial in the number of possible states are too expensive 
for practical use: heuristics must be used to dramati- 
cally cut the number of alternative states considered, 
and our work on traverse and robustify represents one 
attempt to do this. 

The problem considered in this paper is drawn from 
a class of domains we call the NASA Tile World. We 



have implemented a simulator for this class of domains 
in Common Lisp on Sun workstations.' We have also 
implemented a causal theory for the problem consid- 
ered in this paper and are now attempting to collect 
empirical evidence for the utility of our approach to 
the synthesis of control rules. 
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